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I. ABSTRACT 
HPCs (high-performance computers) utilize multiple 

(e.g. hundreds or thousands of) processors to compute 
very large problems quickly by distributing the 
computation across many processors in parallel. This 
liberates problem conceptualization from the 
memory/storage constraints of a single desktop 
workstation. Unfortunately, the complexity of 
programming HPCs is off-putting for new users. 
Furthermore, most DoD users work from a Windows PC 
so that learning Unix well enough to parallel program is 
itself an obstacle. What is needed is a workflow by which 
simplifies the programming task in a familiar 
environment while leveraging the computational power of 
HPCs.   

VISION (Sanner, 2002) is a freely available, Python-
based, drag-and-drop visual programming environment 
that programming for drawing flowcharts that encapsulate 
the underlying programming complexity. This means that 
computations are strung together by dropping and 

connecting computational boxes on a canvas instead of 
writing source code files. This is important for 
productivity since productivity is dominated by the time 
spent programming versus the time spent analyzing 
results.  

As a Python-based package, it is possible to embed 
parallel computing features from the open source iPython 
package into VISION to enable both visual programming 
and parallel execution on remote HPCs. This paper 
discusses the prototype we built at SSC-SD for a visual 
parallel programming workflow based on VISION and 
iPython for parallel computing using a Linux cluster as a 
backend and a Windows XP workstation as the front-end. 

II. INTRODUCTION 
Productivity in scientific computing is dominated by 

the time spent coding versus the time spent reflecting on 
computed results. Insight is driven by how quickly 
intuition can be vetted -- how fast a hunch can be tested 
while pursuing a particular line of thought. Parallel 
computing accelerates computing, but is notoriously 

 
Fig. 1: VISION provides the drag-and-drop functionality for the network shown, which accomplishes a 
signal filtering task. The individual nodes represent code fragments that are connected to implement a 
particular computation. Everything is written in Python. 
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complex and daunting for  non-specialists.   
Further, in a team research setting, a few individuals 

may have the requisite parallel programming skills and 
are relied upon by others for these tasks.  This is a 
bottleneck and a deterrent to investigating new ideas. On 
the other hand, this prototype breaks tasks down into 
manageable computational units which others can easily 
manipulate while coincidently freeing up the team 
members who have parallel programming skills since 
they can focus on maintaining smaller computational 
units instead of the entire computation.   

 Thus, improving scientific productivity by 
facilitating parallel programming in a familiar Windows 
PC environment for both specialists and non-specialists 
was the main motivation for the VISION/HPC prototype.  
The basic idea is to run VISION on the user’s Windows 
workstation and have the embedded parallel tasks execute 
on a remote backend. The key advantage is that the 
graphic intensive GUI runs on the local workstation (and 
is not served pixel-by-pixel through a slow network 
connection) and the intensive computation runs on the 
remote cluster (not overloading the local workstation). In 
the following, we describe in detail how this was 
accomplished and and examine a case-study that shows 
how the VISION/HPC workflow operates in practice. 

III.  PROTOTYPE COMPONENTS  

A. VISION  
VISION is a freely available Python-based visual 

computing environment from the Scripps Research 
Institute in San Diego. It is part of a biomolecular 
visualization toolkit distributed by the Institute. It is 
entirely Python-based and all of the source code is 
available. VISION reduces programming tasks to 
dropping and connecting computing “nodes” onto a 
flowchart.  Fig.1 shows a VISION network that 
accomplishes a signal filtering and visualization task. 

Since VISION is entirely written in Python, it is 
compatible with all other Python modules. In particular, it 
works with the Scientific Python (SciPy) module, which 
includes a wide variety of scientific computing codes (e.g. 
matrix factorizations, data-fitting, statistical estimators). 
Furthermore, VISION comes with several libraries (i.e. 
sets of nodes) focused on specific categories (e.g. image 
processing).  

There are two mechanisms for adding customized 
nodes to VISION. One can build nodes graphically by 
starting with the "generic" node available in the standard 
library. Alternatively, one can write Python scripts with 
input/output interfaces represented as interconnection 
"ports".  Once these codes are developed, they become 
drag-and-drop usable in the flowchart.  

Once a node is developed, VISION provides a text-
editor interface for altering a node’s internal code and 
other properties via the context menu (see Fig. 2). This 
makes it easy to quickly change the underlying 
computation and see immediate results. This is a very 

important feature for a visual programming environment  
and is unique to VISION; other environments require 
everything to be created visually, whereas VISION allows 
both visual programming and embedded text-based 
editing. This means that legacy codes do not have to be 
built visually, but can be pulled in through the text-editor 

and selectively exposed to the visual environment by 
choosing the input/output ports. 

B. iPython  
So far, we have discussed VISION as a tool for 

simplifying the construction of computing tasks, but not 
the parallel computing functions. That part is handled by 

iPython (Pérez, 2007) which is an open source Python-
based development environment for interactive parallel 
computing as opposed to batch-based parallel computing. 
This means that, given an HPC configured for interactive 
use, users can move data between nodes, assign 
computing tasks, and monitor completion interactively. 
Fig. 3 shows an example of an iPython session where 

 
Fig. 3: Shows a sample iPython session where 
Python statements are interactively executed 
on remote processors. 

 
Fig. 2.: The embedded Python code in every 
node on the VISION canvas can be inspected an 
edited from the context menu.  
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specific commands are executed all available nodes. This 
means no more waiting for results to be computed, stored, 
and then loaded since these are immediately in the same 
iPython workspace. 

Further, iPython’s parallel computing mechanisms 
can be used directly from a standard Python script, which 
thus allows it to be embedded into the VISION 
framework.  Variables can be defined and shared between 
nodes using iPython. Thus, iPython has two modes of 
operation – interactive and embedded – and both are 
usable from within VISION, although we will only be 
using the embedded mode for this prototype1. 

C.Workflow Design 
Given the mutual compatibility and open-design 

philosophy of Python embodied in VISION and iPython,  
the prototype was designed to call iPython commands 
from within VISION. It is important to understand which 
Python packages are going to be run on the backend 

(SSC-SD Linux cluster) as opposed to the local 
workstation (Windows PC) and to ensure that these are all 
appropriately configured beforehand.  Thus configured, 
VISION can run on the PC and have its embedded nodes 
compute on the backend and then return the reduced data 
to the workstation for visualization or inspection. VISION 
comes with a one-click installer for Windows and is not 
necessary (although possible) to install VISION on the 
backend. IPython comes as a standard Python 
distributable and relies on the Twisted and Zope Python 

                                                           
1 Future develop plans include the ability to work in either mode, 

which would be useful for debugging. 

packages, which are available on both Windows PCs and 
Unix/Linux platforms. 

D. Platforms 
VISION and iPython were installed on the Windows 

XP workstation. SciPy and iPython and all subordinate 
dependencies were installed on the Linux cluster backend.  

E. Case Study: Array Processing Beampattern 
As a case study, we implemented an array processing 

beamforming problem. The problem is to compute the 
electromagnetic antenna pattern generated by sources at 
different arrival angles given certain array configurations. 
Depending on the level of detail and the size of the array, 
these patterns can be extremely computationally 
intensive.  Fig. 4 shows the essential code used to setup 
the backend computations using iPython. 

Note that the computationally intensive part derives 
from computing a set of physics equations and is 
accomplished in the runDetect function and that the 
code shown in Fig. 4 is just an interface to it. This is a 
good practice for modular design since the runDetect 
script can be developed and tested separately outside of 
the VISION/HPC framework. The main function of the 
code shown in Fig.4 is to setup the intermediate pieces 
from iPython 
(i.e., 
ip.ipmagic), 
which would be 
typed in during 
an interactive 
session. This is a 
key, but usually 
overlooked 
advantage to the 
two iPython 
modes because it allows the code shown above to be 
developed interactively and then pasted into a script.  

Fig. 5 shows the network for the beamforming 
problem. The Vector3D widget comes with the 
standard VISION toolset and provides the coordinates for 

 
Fig. 5. The VISION network shown 

computes the beampattern for a given array 
configuration using the angle-of-arrival chosen 
by dragging the arrow on the unit sphere in the  
Vector3D widget. Multiple Linux clusters are 
available via the chooseHost node. The  
DialInt node tells the BeamPattern node 
how many pieces to divide the problem into so it 
can be distributed over the same number of 
processors. 

 

Fig.4. Python code showing how iPython is used 
within a script to setup the runDetect 
function, which  computes the beampattern for 
the array. 

 

Fig. 6: Multiple Linux clusters 
can be used as backends for 
computation. 
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a unit vector at a position on the sphere shown. The 
arrival angle of the source is selected on the unit sphere 
by dragging the arrow. The act of dragging the point 
shown on the widget provides a tactile connection to the 
problem and is important for intuition building. The 
resulting coordinates are input to the BeamPattern 
node and the DialInt node tells the BeamPattern 
node how many pieces into which the problem should be 
divided so that it can be distributed over the same number 
of processors  

 We used the chooseHost node (see Fig. 5) to 
switch the backend between two different SSC-SD 
clusters (Lynx, Seahawk) to demonstrate the flexibility of 
this approach. Once the host is chosen, the VISION/HPC 
flowchart executes the computation on that host.    

Fig. 7 shows the remainder of the embedded code in 
the BeamPattern node, which includes the division of 
the computational task across a given number of 
processors. This is accomplished using the gather/scatter 
mechanism that is built into iPython. The next block 
merely pulls the various sub-pieces from the different 
processors and assembles the final graph shown in the 
next figure. 

The graph in Fig. 8 shows the computed 
beampattern. The horizontal white lines delineate the 
computational stripes that have been computed on 
different processors based on the value of the DialInt 
node. This result is synthesized and presented on the 
Windows PC, so no high-bandwidth graphics were 
transmitted. In fact, only the commands to create the data 
shown in each of the three pieces was transmitted.  

IV. SUMMARY 
We have established a Windows-to-HPC 

computational workflow to enhance productivity using 
the freely available VISION visual computing 
environment in connection with the parallel computing 
features of the iPython package.  We examined the 
performance of this workflow using an array processing 
beamforming case study. The workflow prototype was 
designed so that the graphically intensive GUI ran on the 
local Windows PC workstation and the intensive 
computations ran on the remote Linux cluster. The 
reduced data product was returned to the local  
workstation and rendered there, thus saving the slow 

pixel-by-pixel transmission of the graphic through the   
computer network.  
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Fig. 8: The resulting beam pattern is shown. The 
three horizontal stripes indicate that three 
processors on the Linux cluster were used for the 
computation. The prototype distributes the 
computation across the three selected processors 
and reassembles the result on the local 
workstation. Note that the graphic is rendered on 
the local workstation and not transmitted pixel-
by-pixel through the network connection (which 
would be slow). 

 
Fig. 7: Remainder of code in the Beampattern 
node showing how the results are pulled in from 
different processors and assembled into the final 
graph. 


